2ZCE

Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in complex with pyrrolysine and an ATP analogue


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Crystallographic Studies on Multiple Conformational States of Active-site Loops in Pyrrolysyl-tRNA Synthetase

Yanagisawa, T.Ishii, R.Fukunaga, R.Kobayashi, T.Sakamoto, K.Yokoyama, S.

(2008) J Mol Biol 378: 634-652

  • DOI: https://doi.org/10.1016/j.jmb.2008.02.045
  • Primary Citation of Related Structures:  
    2E3C, 2ZCE

  • PubMed Abstract: 

    Pyrrolysine, a lysine derivative with a bulky pyrroline ring, is the "22nd" genetically encoded amino acid. In the present study, the carboxy-terminal catalytic fragment of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) was analyzed by X-ray crystallography and site-directed mutagenesis. The catalytic fragment ligated tRNA(Pyl) with pyrrolysine nearly as efficiently as the full-length PylRS. We determined the crystal structures of the PylRS catalytic fragment in the substrate-free, ATP analogue (AMPPNP)-bound, and AMPPNP/pyrrolysine-bound forms, and compared them with the previously-reported PylRS structures. The ordering loop and the motif-2 loop undergo conformational changes from the "open" states to the "closed" states upon AMPPNP binding. On the other hand, the beta 7-beta 8 hairpin exhibits multiple conformational states, the open, intermediate (beta 7-open/beta 8-open and beta 7-closed/beta 8-open), and closed states, which are not induced upon substrate binding. The PylRS structures with a docked tRNA suggest that the active-site pocket can accommodate the CCA terminus of tRNA when the motif-2 loop is in the closed state and the beta 7-beta 8 hairpin is in the open or intermediate state. The entrance of the active-site pocket is nearly closed in the closed state of the beta 7-beta 8 hairpin, which may protect the pyrrolysyladenylate intermediate in the absence of tRNA(Pyl). Moreover, a structure-based mutational analysis revealed that hydrophobic residues in the amino acid-binding tunnel are important for accommodating the pyrrolysine side chain and that Asn346 is essential for anchoring the side-chain carbonyl and alpha-amino groups of pyrrolysine. In addition, a docking model of PylRS with tRNA was constructed based on the aspartyl-tRNA synthetase/tRNA structure, and was confirmed by a mutational analysis.


  • Organizational Affiliation

    Protein Research Group, Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Pyrrolysyl-tRNA synthetase291Methanosarcina mazeiMutation(s): 0 
Gene Names: pylS
EC: 6.1.1.26
UniProt
Find proteins for Q8PWY1 (Methanosarcina mazei (strain ATCC BAA-159 / DSM 3647 / Goe1 / Go1 / JCM 11833 / OCM 88))
Explore Q8PWY1 
Go to UniProtKB:  Q8PWY1
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8PWY1
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.190 
  • Space Group: P 64
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 104.501α = 90
b = 104.501β = 90
c = 70.851γ = 120
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data collection
HKL-2000data reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-04-22
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2014-01-22
    Changes: Non-polymer description
  • Version 1.3: 2014-02-05
    Changes: Other
  • Version 1.4: 2024-03-13
    Changes: Data collection, Database references, Derived calculations