HBB is the domain on DEAD-box eukaryotic DNA repair helicases (EC:3.6.1.-) that appears to be a unique fold. It's conformation is of alpha-helices 12-16 plus a short beta-bridge to the FeS-cluster domain at the N-terminal. The full-length XPD protein ...
HBB is the domain on DEAD-box eukaryotic DNA repair helicases (EC:3.6.1.-) that appears to be a unique fold. It's conformation is of alpha-helices 12-16 plus a short beta-bridge to the FeS-cluster domain at the N-terminal. The full-length XPD protein verifies the presence of damage to DNA and allows DNA repair to proceed. XPD is an assembly of several domains to form a doughnut-shaped molecule that is able to separate two DNA strands and scan the DNA for damage. HBB helps to form the overall DNA-clamping architecture [1]. This family represents a conserved region within a number of eukaryotic DNA repair helicases (EC:3.6.1.-).
SHS2 domain found in N terminus of Rpb7p/Rpc25p/MJ0397
Rpb7 bind to Rpb4 to form a heterodimer. This complex is thought to interact with the nascent RNA strand during RNA polymerase II elongation[1]. This family includes the homologs from RNA polymerase I and III. In RNA polymerase I, Rpa43 is at leas ...
Rpb7 bind to Rpb4 to form a heterodimer. This complex is thought to interact with the nascent RNA strand during RNA polymerase II elongation[1]. This family includes the homologs from RNA polymerase I and III. In RNA polymerase I, Rpa43 is at least one of the subunits contacted by the transcription factor TIF-IA [2]. The N terminus of Rpb7p/Rpc25p/MJ0397 has a SHS2 domain that is involved in protein-protein interaction [3].
The S1 domain occurs in a wide range of RNA associated proteins. It is structurally similar to cold shock protein which binds nucleic acids. The S1 domain has an OB-fold structure.
This is the second winged helix domain can be found in TFA2 proteins present in Saccharomyces cerevisiae. In form 2, the domain interacts directly with Rad3, a DNA helicase [1].
The small TFIIE subunit Tfa2 (yeast TFIIE-beta) contains two WH domains and two conserved alpha-helices called the E-tether [1] that bind the E-linker. Consistent with the structure, the E-tether is essential for TFIIE function and subunit dimerisati ...
The small TFIIE subunit Tfa2 (yeast TFIIE-beta) contains two WH domains and two conserved alpha-helices called the E-tether [1] that bind the E-linker. Consistent with the structure, the E-tether is essential for TFIIE function and subunit dimerisation. Members of this group are found in fungi.
This domain contains a distinctive -FW- motif. It is found in a family of eukaryotic transcription factors as well as a set of proteins of unknown function.
The N-terminal domain of the TFIIH basal transcription factor complex p62 subunit (BTF2-p62) forms an interaction with the 3' endonuclease XPG, which is essential for activity. The 3' endonuclease XPG is a major component of the nucleotide excision ...
The N-terminal domain of the TFIIH basal transcription factor complex p62 subunit (BTF2-p62) forms an interaction with the 3' endonuclease XPG, which is essential for activity. The 3' endonuclease XPG is a major component of the nucleotide excision repair machinery. The structure of the N-terminal domain reveals that it adopts a pleckstrin homology (PH) fold [1,2]. This PH-type domain has been shown to bind to a mono-phosphorylated inositide [2].
This is the C-terminal domain of Transcription factor Tfb2 present in Saccharomyces cerevisiae. Tfb2 is referred to as p52 in humans. The interaction between p8-Tfb5 and p52-Tfb2 has a key role in the maintenance of the transcription factor TFIIH arc ...
This is the C-terminal domain of Transcription factor Tfb2 present in Saccharomyces cerevisiae. Tfb2 is referred to as p52 in humans. The interaction between p8-Tfb5 and p52-Tfb2 has a key role in the maintenance of the transcription factor TFIIH architecture and TFIIHs function in nucleotide-excision repair (NER) pathway. The C-terminal domain of Tfb2 is thought to have a crucial role in DNA repair [1].
The carboxyl-terminal region of TFIIH is essential for transcription activity. This regions binds three zinc atoms through two independent domain. The first contains a C4 zinc finger motif, whereas the second is characterised by a CX(2)CX(2-4)FCADCD ...
The carboxyl-terminal region of TFIIH is essential for transcription activity. This regions binds three zinc atoms through two independent domain. The first contains a C4 zinc finger motif, whereas the second is characterised by a CX(2)CX(2-4)FCADCD motif. The solution structure of the second C-terminal domain revealed homology with the regulatory domain of protein kinase C (Pfam:PF00130) [1].
RNA polymerases catalyse the DNA dependent polymerisation of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 1, represents the clamp dom ...
RNA polymerases catalyse the DNA dependent polymerisation of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial. and chloroplast polymerases). This domain, domain 1, represents the clamp domain, which a mobile domain involved in positioning the DNA, maintenance of the transcription bubble and positioning of the nascent RNA strand [1,2].